当前位置: IT大杂烩 > Ubuntu  > Coursera Machine Learning 学习笔记(五)

Coursera Machine Learning 学习笔记(五)

www.someabcd.com  网友分享于:Jun 8, 2018 5:58:12 PM

标签:machine learning

- Cost function

       技术分享

       针对训练集以及我们的假设,下面我们将考虑如何确定假设中的系数。

       技术分享

       我们现在要做的就是选择合适的参数,参数的选取直接影响着所得到的直线对于训练集描述的准确程度。所预测的值与训练集中实际值之间的差距就是建模误差(Modeling Error)。

       通过计算建模误差的平方和,进而定义代价函数(Cost Function)。我们的目标则是通过对参数的选择来使得代价函数最小。

       技术分享

       通过绘制等高线,我们可以看出三维空间中确实存在一个可以使得代价函数最小的点。

       技术分享

       下图则展示了,通过选择合适的参数来使得代价函数值最小的过程:

       技术分享

       技术分享

       技术分享

Coursera Machine Learning 学习笔记(五)

标签:machine learning

发布此文章仅为传递网友分享,不代表本站观点,若侵权请联系我们删除,本站将不对此承担任何责任。
Copyright ©2018  IT大杂烩  版权所有  京ICP备11030978号-1 网站地图